(] Bridging the Gap with Machine Learning Techniques: N bN'VERS'TYRFa
niversity of New Hampshire 2 < - e
b Rk A Structural Damage Detection Framework in Bridges Omaha

NIVERSITY §OF
Burak Duran! Saeed Eftekhar Azam?
Neb LII}C% IDepartment of Civil and Environmental Engineering, University of New Hampshire, Durham, NH KI N NM I
Supervised Technique: Deep Learning-based Two-step Unsupervised Technique: Novelty Index Calculation for
damage detection using Convolutional Neural Network a field test Of truss b" ldge |

Confusion Matrix : '% ;‘, .

o e - . 120
Step-1 Identification of damage severity o1 ww omon omow b
Apply load time-history 7 - R 100
= D3| °wo% 0 10.0%) 0.0% 0 (0.0% I - |
ArEr 5 ": , -‘t I -
1l2]3]a|sTe|7]8]o]10] | .. — N
' | . |
I I I | l I l l I I DS‘ (0.0%) 01{0.0%) 0 (0.0%)
= 60 b0 e
D6/| 0fo%  0@O0%)  0(00%) — RS ) ey oag o
Nodes: 1 | i SR ; 4 3n it i
2 3 4 D71 owo% 0 (0.0%) 0 {0.0%) 0 (0.0%) 3¢ 1_ ? , T}é % / ﬁ“ 0 LN 'ﬂ‘ ;: \‘i \T)\"g":'\:-:,i": 2 "
- Damage is represented by El reduction (10%, 20%, 40 Tested truss bndge ——
90%) at Member-5 S 1 Tesla
- D1 is the heavily damaged case whereas the UN is I
20 35 | = U-Haul pass
the healthy case. == Bealthy <no damage .
_ _ N 30/ — Unhealthy - heavy damage o g e B R AR R RS LI I HE S LA L 2 1
- Obtain the acceleration response at the nodes and [ - . | o -
. . D1 D2 D3 D4 D5 D6 D7 D8 D9 UN P g | - S
convert them into gray-scale images Predicted label £ % ! |9
0 : Z an. | | 2 . 0.3 Undamaged
- %100 testing accuracy Contosion ot — c 20 5 & 3 e
b, 4 z = | e Mean of Undamaged
g - = AR 0 (0.0%) 0 {0.0%) 0 10.0%) 2 f e “ | | § %\O 2 Mean: of Dl
Step"z Ident’flcat’on Of damage lOCthOﬂ = 10 § ' '§ 2 I Mean and std dev. of Undamaged
B 0(00%  0(00%)  0{00%)  0(0.0%) 250 % § | E - |  Mean and std dev. of D1
El varies within each location along the beam 5 5 S 0.1
C 0.0%) 0 40.0 (¢ L l |
i i ; S . T—
Apply load time-history . .lwvw\«wmmw B
D % 0.0%) B | | 0+ ) ) i ' ' ) )
0 5 10 15 20 25 30
el Lol e[ 1] | . S e o .
E b Collected strain data vs. time steps Healthy vs. unhealthy (U-Haul Truck)
F 0 10.0% 97.7% 0 (0.0%) 0 {0.0%)
> ¢ Tesla pass U-Haul and Tesla pass
1.6
- Collect acceleration sensor data at each node for GRENEL AN A R R - s esanr s s Fna e s s ana e waml 000 I { -i-f-i-i-I-Hi‘H’H‘I’HH-H-"
: : : 1.4 ; .
each corresponding load time history and El U SRR . ... .. [T 5
Va|Ue. % 1.0 Undamaged 5¢
. . |4 000.0%) 0 (0.0%) 0 (0.0%) 0 {0.0%) 0 (0,0%) 50 _8 : D1+D2 8 12 -
- Convert the data into gray-scale images for the Eosl e Mean of Undamaged £
i ! 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 {0.0%) 0 (0.0%) ﬁ ----- Mean Of Dl+Dz i;;
CNN |mp|ementat|0n. d % 0.6 | Mean and std dev. of Undamaged 3 1.0
- %99 testing accuracy A b C D E ¢ G H i J - = |  Mean and std dev. of D1+D2 &= e U-Haul D1+D2
Predicted label 0.4 Tesla D14+D2
Mean of U-Haul D1+D2
. L 1 1 . 0.81 ean of Tesla +
Transfer Learning: Re-weighting 0.2 ---H-I-H—I—I-i—f}-E-E-H-I-H M d i d ng-ﬁaué?lggz -‘
: : D1 EEEREREE] 0 (0.0%) 0 (0.0%) 0 10.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 10.0%} 0 {0.0%) 01— B e e e s e ean.an S ev. 0 : esia +'
- The aim is to transfer the knowledge between the 5 z 10 s 50 X 0 5 10 15 20 25 30 35
structures Vehicle pass Vehicle pass
' . : 100 Healthy vs. unhealthy (D1+D2, Tesla U-Haul vs. Tesla for heavy damage (D1+D2) case
- The length of the beam in Step-1 is changed 5% Y/ v ( )
and a new dataset is generated.
- Before TL, the network accuracy was 50%, after i
TL (freezing and unfreezing process), the accuracy
reached 99%. Cafieene = {60
WasEa e Ffef __________ | FC-1 FC-2 FC3 |
l | |
! CONV-I CONV-2 POOL-I CONV-3 coNv4 pooL2 1 ' 8 Funding Statement:
I} I This research is partially supported by NSF Award Number:1762034, Spokes: MEDIUM: MIDWEST:
r | ! | Smart big data pipeline for Aging Rural bridge Transportation Infrastructure (SMARTI) as well as US
== . r | | [ - Army Crops of Engineers, Engineering Research and Development Center grants W912HZ21C0060 —
= == 5 i i L B I Multilevel Analytics and Data Sharing for Operations Planning (MADS-OPP) and W912HZ23C0005 —
- o SMART Analytics for Critical
' I I I UN . D10.0%) 0{0.0%) 0 (0.0%) 0 10,0%) 0 10.0%) 0{0.0%) 0 (0.0%) 0 10.0%) 110.8%) ! !
S e I I D1 D2 D3 D4 D5 D6 D7 D8 D9 UN
| —0

fosaaa Predicted label



Structural Health Monitoring and Damage Detection-Prediction of Truss
Bridges Using Artificial Neural Networks and Transfer Learning

Rola El-Nimri, Daniel Linzell

Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA

Overview

Bridge condition assessment 1s usually done
by either visual inspection or installation of
a large number of sensors. However, this
might be unsafe and extremely costly.

Objectives

 Develop an automated hybrid
experimental-numerical (POD-ANN)
framework to detect and locate damage.

U Transfer gained knowledge to another
domain to generalize well for similar
bridges

Field Testing

Bridge Information:

90-foot simply supported; five-span truss
bridge located 1n Lancaster County 1n the
State of Nebraska. The superstructure of the
bridge consists of multiple steel girders and

stringers supporting a cast-in-place concrete
deck.

University of Nebraska — Lincoln

UNIVERSITY of NEBRASKA-LINCOLN

Instrumentation:

e |18 strain transducers were installed at the
stringers

20 were 1nstalled on the truss.

* 3 accelerometers were installed on the
flooring system to measure the acceleration.

* 3 LVDTs were installed at the mid-span of
the three internal panels.

Tests:

* The tests were performed by an empty 26-
foot UHAUL that weighs 12,640 Ibs. and a
Tesla car.

e Performed tests:
» Healthy state

» Damage case (1): lower flange was cut up to
half of the web of the beam at the middle
span

» Damage case (2): lower flange was cut up to
half of the web of the beam at the second
span

* Runs were performed at 5 mph, 10 mph,
static tests, and crawling tests.

University of Nebraska at Omaha

* Modelling the bridge using OpenSees.
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POD-ANN Damage
Identification

Domain Adaptation and

Transfer Learning

* Another truss bridge will be chosen
(target domain).

 POD-ANN analysis will be conducted
from the knowledge transferred from the
source domain.

 Predicted POMs will be obtained.
Task 1

Knowledge transfer

Generating strain data for healthy and
damage scenarios (matching the field).

Performing the POD and obtaining Validation of Transfer

POMs for the numerical data.

Training an ANN to detect the POMs —
Supervised Learning.

Learning Results

* Test the target domain and obtain field
(real) results.
Performing the POD on the field data and

obtaining the POMs. * Comparisons between TL results and

field results.
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Securing Machine Learning at the Edge for

Autonomous Structural Health Monitoring (SHM)

Sheikh Muhammad Farjad (

), Robin Gandhi, George Grispos

Project Aims

» [nvestigating security implications of
machine learning deployed at the edge

* |dentification of vulnerabilities in autonomous
structural health monitoring solutions
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Research Questions

RQ1: What are the security threats faced by
machine learning deployed at the edge for SHM?

RQ2: How can these threats undermine autonomous
operations of SHM solutions?

Methodology

1: ldentify usecases for ML-based approaches
for SHM.

2: Conduct a security analysis of studied
approaches.

3: Propose a framework to study the effects of
security threats on autonomous SHM operations.

4: Evaluate the proposed framework using real
world solutions.

Data Collection for SHM

1: Contact-based Approach

2: Vision-based Approach

Machine Learning for SHM

Machine Learning for SHM

Convolutional Neural Network

(CNN)

Support Vector Machine

Fully CNN

Data Poisoning

Deep CNN

1-Dimensional CNN

Multi-scale

CNN

Faster Region-based CNN

Evasion

Model Extraction

Naive Bayes Data Fusion

Inference

Current Status and Next Steps

Current Status:

The current machine learning algorithms used for
structural health monitoring lack security analysis
and are prone to different adversarial attacks. We
iInvestigated different attacks [1, 2].

Next Steps:

We are developing testbed for assessing the
machine learning models for structural health
monitoring. It will hugely facilitate the research
community in framing the solutions.
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Deep Reinforcement Learning based Approaches

for Bridge Structural Health Monitoring

University of Nebraska at Omaha

CONTRIBUTORS:

» Divija Swetha Gadiraju
* Deepak Khazanchi

Introduction

e DRL has various applications in loT,
healthcare and autonomous
transportation.

e DRL Agent learns through agent
environment interaction

action
a,

Why DRL?

e Traditional DL Methods suffer from the
curse of dimensionality

e Bridges have high number of factors
affecting their condition.

e DRL can handle high dimensional state
space

Artificial Intelligence includes any approach that attempts to
make machines perform intelligently.

Machine Learning involves getting machines to learn
to solve problems from, usually large amounts of, data.

/, Deep / Deep N Reinforce murenﬂt\H
Learning Reinforcement Learning
Learning

DL models data with Combines
many layered (deep) | reinforcement learning
neural networks.

An RL agent learns from
a reward signal using
with deep networks. trial and error.

N\ N\ J /

Image Source: Whittlestone, Jess et al. “The Societal Implications of Deep
Reinforcement Learning.” J. Artif. Intell. Res. 70 (2021): 1003-1030.

OFfFfline DRL Approach

e DRL can be applied to the NBI dataset to
maintain the bridge health

e The repair schedules can be chosen
based on the past historical data of
condition ratings and transition
probabilities

e The problem is formulated as a Markov
Decision Process and is solved with DRL
algorithm

UAV based Crack detection

e Maintenance Schedules take too long
and recordings are prone to errors

e Frequent surveying helps detection of
new cracks and check the condition of
old ones

e

Unmanned Ariel Vehicle

Detected Crack

This research is partially supported by NSF Award Number:1762034, Spokes: MEDIUM: MIDWEST: Smart big data pipeline Ffor Aging Rural

Methodology

e DQN has achieved human-level control in
many of Atari games

e Q-learning learns the action-value function
Q(s, a): how good to take an action at a
particular state.

e Deep Neural Network is used as a function
approximator

‘ Reward r k

Agent

Take action a Environment
*»-- +» -

parameter 6

I
Observe state s ‘

Conclusion

e DRL based approaches can be used in various
aspects of structural health monitoring for
bridges

e Two such use cases of the ongoing work are
presented.

Important References
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Developing Architecture for a Routing System using Bridge Data and

Adversary Avoidance
William Heller, Brian Ricks, Yonas Kassa, Rahul Kamar Nethakani, Brandon Lacy

University of Nebraska at Omaha

Goal

Traditional Routing Bridge-observant Routing
Traditional Our routing will
¢ B ‘ Q o
bridge integrity |
=% I | =% ﬂMﬂ bridges

Architecture + Big Data

National Bridge Inventory (NBI
* Government-managed data

* Publicly available
* Bridges are inspected once every two
years

Merged Dataset . .
* Data is highly accurate and detailed
(N Bl + OSM) * Bridge health, location, max load,

recommended load...

..

Valhalla

* Any Valhalla-based

* QOpen-source routing
use case system 0
L . . - en Street Map (OSM
e Live simulations e Use our custom NBI data Merge data using 4 custom Tpo (%(S d )_
* Web-based routing * Editable components program pen-source ata
application  Sif — Dynamic costing * Resulting data format is in OSM e Worldwide data
a'i‘);‘thm for bridge (XML) * Inconsistent in rural areas
safety

* (Can be used in any bridge- * Widely supported

* Thor — Custom routing . | . :
“ ’ N ) ’

algorithm for
adversary avoidance

This study was financially supported by the NSF-BD-Spokes Program (Award #1636805) and the NSF-Spokes Program (Award #1762034). Their support is gratefully acknowledged




Preserving and Enhancing Data Integrity for Edge Sensors

Md Monirul Islam (

, George Grispos, Robin Gandhi

College of Information Science & Technology, University of Nebraska at Omaha.

Problem Statement

Structural Health Monitoring (SHM) solutions
produce large amounts of data using edge sensors.

If a malicious actor modifies or deletes this data, any
decisions made based on this data could result in
catastrophic incidents or accidents.

It is therefore critical to investigate how to preserve
the integrity of data produced by sensors on the
edge of SHM solutions.

Research Questions

« According to the literature, what are the threats to
data integrity for edge sensors used in SHM
solutions?

« If the integrity of data from edge sensors is
compromised, what is the impact on specific SHM
solutions?

 How can the integrity of data from edge sensors
be preserved and enhanced to support SHM
solutions?

Research Method

« Survey threats to data integrity for edge sensors
and enumerate consequences for SHM

« l|dentify and catalog vulnerabilities within SHM
solutions

* Propose a framework to address the data integrity
requirements in edge sensors

« Perform analysis of data integrity controls in a lab
environment

Current Data Integrity Solutions for Edge Solutions Current Status and Next Steps

Current Status: Cybersecurity aspect of SHM has
mainly been overlooked. We are assessing existing
edge sensor platform’s security and vulnerabilities
[1,2] to develop secure ecosystem for data integrity
of edge sensors.

0

SECURE Future Works: Developing testbeds to test
proposed methods for data integrity of edge sensors.

Data encryption Integrity protection Secure communication
* Encryption utilization « Utilize digital signature « Employ secure lightweight
protocol

( %
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Robust authentication and Real time anomaly detection Secure firmware and

access control « ML and statistical analysis software updates RDF)
* OAuth 2.0 analysis « Secure boot and FOTA
« X 509 certificate with digital signature
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How to Select Simple-Yet-Accurate Model for Bridge Maintenance?
Akshay Kale, Yonas Kassa, Brian Ricks, and Robin Gandhi

Background Challenge

repaired percentage

15,376 Bridges " Challenge 1: Challenge 2:

25 Explainability is inversely proportional to accuracy Every model tells a different story about bridge health
NBI and LTBPP ; .
A Table 12. Compy
28 Bridge Features L . o s et 5 S L
8 ML Algorithms o | ST A A

> Explainability

Summary of Bridge Deck Repair by County

Image Credit: Akhil Kodali

Methodology

Data Processing

Data Collection Processing
O00 Data source Data Cleaning
llr National Bridge Inventory Feature Selection
V. Long Term Bridge Performance Program Data Transformation

Deriving Maintenance

The Similarity between model explanation using
Wasserstein distance betlween all implemented models

— > Deck ' Substructure
' ‘ o I N * 1 i —
Modeling . - == . =
Qo[ fos] o =: ¢ 8 B SN B =
— = o = 3 SVM
i : " == © . . U= - 5VM © . B
Sampling Tree Based Tree Based m.um m s ¢, ! = L m 3 i m — -
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joon SMOTEN Deep Learning Model = I -
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. e 1 B .LJ SHAP Feature Importance SHAP Feature Importance
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Predictive Performance Model Interpretation Subject Matter Expert ! . ! ! | l —
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] * Instance level A .
Explanation :
Important variable interactions Instance level interactions g .
Formal Concept Analysis : I o - Fe SHAP Feature Importance
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B onoets Distribution of SHAP Feature importance of all implemented Top five influential factors across
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Efficient Convoy Routing and Bridge Load Optimization User Interface

Brandon Lacy, Will Heller, Yonas Kassa, Brian Ricks, and Robin Gandhi

Dynamic Simulation @ Jump to Address... 0}

Overview

Displays merged OpenStreetMap (OSM) and National Bridge
Inventory (NBI) data

Plans routes around bridge structural data

Save Routes and Convoys for later use

Ul written in React and Material Ul
API written in C#

Easy conversion between addresses and coordinates with
Nominatim

<O

Menu Design
Creation and modification of routes and convoys with little
obstruction of the map view

OSM and NBI Integration

B CONVOYS R ROUTES B CONVOYS K ROUTES

View OSM and NBI data with ¢ + +
the help of tags * } | New Route

O Vehicle (#) 38 mph Ry 64kg Test Route
Route Name

Route

® 1110 S 67th St, Omaha, NE 68182

\

® 41.1072529 -95.9354968

Upcoming feature to view
bridge structural data

CANCEL ADD
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Transverse Crack Strain Analysis using U-Net
on Concrete Bridge Dataset

Ji Young Lee?, Bennett Jackson®, Chungwook Sim®*, Carrick Detweiler?

aSchool of Computing, College of Engineering, University of Nebraska - Lincolin
b Department of Civil and Environmental Engineering, College of Engineering, University of Nebraska - Lincoln
P g g g g g y

Summary Crack Detection and Width Measurement Strain Analysis
* Transverse cracks observed in concrete bridge elements can accelerate Training Uonet rack Width
. . ! : U-net-1 U-net-2 U-net-3
deterioration of bridge health | | (baseline)
* Model tuning for architectures and # of params. oM oM 3M 3M * To provided perspective on the calculation of crack widths, it is necessary to consider
* Current system exclusively rely on data provided from human inspectors hyper-parameters Loss metic F1 F1 oU F1 a physical model of cracking
_ Precision 0.4184 0.4844 0.6408 0.6762
* Many researched have been studied under restricted environments * Model performed best with 3M params |, 03358 | 04696 | 03978 | 05734 * Fortlexural cracking, the crack width at the level of the reinforcement can be
F1 0.3726 | 04020 | 04342 | 0.5826 calculated as follows
* This project demonstrated the crack strain analysis using deep learning o et s
segmentation model with images collected from outdoor concrete bridges — — ' {:‘L\“ Q
with UAVs

3000 A

Raw stitched image

— — F —— - /\ /\ /\ |- Reinforcing
~ ,/ Steel @ g S
I A A f, we=eS.  B=_=5—
Inference e ]
: Title Keyword Location i Ozriarcva/g = : : Fig.2—Cracked section :’lile:ecra‘:k wide;
Nebraska Concrete Bridge Dataset  JEL=it ’ augmented) * Comparison to ground truth mainly focused on the apparent transverse cracks | | e, = rinforcing steel stran =
. = crack spacing;
UAV19-1 * concrete overlay — é = re%niorc?ng s:ee: stre;s; andf —
. ° . . . - . . o s — Tremniorcing ste€l modaduius or €lastiCity.
* Qutdoor concrete bridge deck (Elkhorn, CO{‘S&YUC“OH marks | Elkhorn, NE 13/ 3367 * Tested for the first span of the pedestrian bridge image Neoma) Aoy I Lk B
NE) ® patches
Images with cracks Raw stitched image T | | T =
UAV19-2 | ® concrete overlay ° .
(Elkhorn, | ® tining marks Elkhorn, NE 9/ 3266 " . / 3
Pedestrian bridge in Lincoln, NE s T . 2
UAV21 * concrete overlay 2000 Fig.3—Strain gradient. W= 2E—5I3 dz + G)
_ (Omaha, | * pier Omaha, NE 219/ 2761 .
* Images collected with UAV NE) e
GV18 * concrete Overlay > .:Vheie maximum permissible bar spacing, in.;
(Lincoln, * expansion joints Lincoln, NE 260 / 3108 6000 we = limiting crack width, in.;
e UgCS software for automated NE) e tining marks E, = 29,000 ksi;
. . 7000 fs = 0.6, ksi;
Image data collection for UAV PD DECK | * pedestrian bridge | - ll).onio.osdc; wd
(Llncoln, ® deCk Llncoln’ NE 100/ 100 0 5000 10000 15000 20000 c = ottom cover measure Iom center o1 1Iowes ar, 1.
: : : NE) _
* Stitched with Pix4D software ; Sround-truith
PD PIER | ® concrete overlay |
(Lincoln, | * Pier Lincoln, NE 96 / 96 ] | |
NE) 2000 - ; ' \5

4000 -

| :

/ k i

L o

i ! ; P o !
}, : “1 J : .w é‘ :
IR b (] ;1 {»

y ! ! \ !
( : .

{ : ( ; \
6000 - i ‘ : | \

7000 -

° * Mimicked the visual inspection performed with human inspectors by reading images,
. Crack prediction results . . _ _ ]
D : M l e T localizing cracks, and measuring crack widths for strain analysis
etection Mode ‘ —
2000 - T ‘ : | ; [ A B | . . . . . . . .
T B T R * Vision-based data analytics can provide useful information for bridge inspections and
/ B N S assist the health monitoring of aging concrete bridges
5000 - : ‘ | o | : g[ : { ¢ _
* One of the SOTA methods for crack detection SR ( . S A | - Re ference
* Semantic segmentation model with encoder and decoder based architecture :
: : a) SPH Engineering, Ugcs, https://www.ugcs.com, 2021.
e Keras and Tensorflow based implementation Wldth Measurement @) J 99 P J
_ _ _ _ (b) Pix4D, Pix4dmapper, https://www.pix4d.com/product/pix4ddmapper-photogrammetry-software, 2021.
| % i * [Extracted Euclidean distances between centerline to boundary pixels
S
] - D @ Centerlne overlayed onthe mask__Eucidean distnces to the edoes_ __ (c) Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical
% Jx . ] J “““““ : .u % % “ ! % } Nor® - j Image segmentation." Medical Image Computing and Computer-Assisted Intervention—-MICCAI 2015: 18th
“ MO 5 ) @ (3 EJ % % ;; il e ? : International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part lll 18. Springer
I L e : l ] MMMMM P i g"- *- EJ oo p 2 International Publishing, 2015.
N I B | o g — [u(dist(b, 0)), o(dist (b, )] (d) Frosch, Robert J. "Another look at cracking and crack control in reinforced concrete." Structural
L {lwl if 7] > o Journal 96.3 (1999): 437-442.
:smoot ﬁxQ if 2] < a
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Deep Learning Vision-Assistive Steel Bridge Inspection
using Unmanned Aerial Vehicles

Summary

Corrosion is one of the most typical bridge deficiencies shown in steel bridge
members.

* Severely corroded members require further inspection than vision-based such as
tactile inspection.

* Human-involved inspections can be a problem when some of the members are placed
In a location where inspectors have to climb up or down

* This project proposes the inspection framework for steel bridge members using UAVs
both in simulated and real-world scenarios

System Design

Steel bridge inspection using UAVs

Hardware Specification

Model Weight (g)

F450 Quadcopter

Controller Pixhawk PX4 38

Tracking camera Intel Realsense T265 60

FPV camera Logitech C920 182

Companion computer |NVidia Jetson Nano 140

Battery 5000mAh 11.1V LiPo 600

System graph in ROS
. s ATHEATERTCAR | —_—

- o T
f_}f"ﬁ ,f"""m __————E?;;M;H
_/_;/.-’ff - imaaTss e n_raw e —_— __-r:f"— —

(_.-.:.;_.Ti ,.:!_:__;_J_? | W 3 "{'ﬂ"‘im_'} oL command

AEETArRTRaienEal_ CAMmam_manger — _,__f- MMm.___.H - __-F" | R |
nmmm 2 =
|.h-m2_nm_-w:£"' ﬁ:ml|

pre————— _t_mwmm 3

| ITBMmErATEN ey 2Amage i ITage_mpcE

SO AR Py

| FamecaTibise Limage_nm inage logics

Ji Young Lee?, Chungwook SimP", Carrick Detweiler?

2 School of Computing, College of Engineering, University of Nebraska - Lincoln
° Department of Civil and Environmental Engineering, College of Engineering, University of Nebraska - Lincoln

Inspection Algorithm

Algorithm Flowchart

. e
S Deep Ieamlr_'lg w.a.lun-bas.ad [ l Stale map

L pasiticning A

_ . - — {0) uninspectad
) Grid searching —~ i T~ _—"is this region inspected? ~—_
T S T Y —}""-\.__\_\__.5. is GPS available? - —p—.__q__h._.-% (5,2 1) - (1) inspected
e : (2) need further inspection
[ yes »> GPS-based positioning —
i
v
gLl — % isboltdstected? = —yes—® isbolt severely comoded? —yes—» it —

(i =0-+8i=1) (8 =15 =3)

Vision-assist Positioning for GPS Loss

* UAVs can easily lose GPS signal near the bridge site

* Design a positioning algorithm with deep learning vision with a FPV camera from a
UAV

* Detect bridge members with the pre-trained model to focus on bridge sites in case of
sudden GPS lost and stabilize UAV's current poses

err = ((0x — ¢x) + (0y — cy))1/?

Detection Model

Data

* Collected and created varying types of labeled images

* Approximately 7000 rivets were labeled for bridge members

Tiny YOLO v3

* Light-weight and fast computing model (<30 convolutional layers) for real-time
onboard detection on UAVs

* |dentify and localize the target objects

* Train the model with bolt samples with light corrosion condition

— - Time (FPS)
Method AP@.50 AP@.75 (3000x4000p%)
Mask R-CNN 0.87 0.45 0.2
YOLO v3 0.75 0.38 1

tested with Nvidia Tesla V100 PCle

Experiments

Experimental Setup

* Scan and inspect the side of the steel bridges with UAV’s FPV camera
* Run onboard deep learning model on UAV's companion computer for real-time detection

* Wireless bi-directional communication between UAV and ground PC In real-time

Simulation scenario

* Build a realistic simulated bridge environment using the Microsoft AirSim simulator

* A UAV with an FPV camera was used to perform the inspection with bolt detection

Inspection Environment in AirSim

ﬂi:.‘*‘:mhm::: !"h

/m KRR
AR VR /N

Real-world scenario

* The UAV system would be tested in the cage and the structural lab for the controlled
testing environments

* The study is planning to be expanded in steel bridges located in Nebraska

Rererence

(a) Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint
arXiv:1804.02767 (2018).

(b) WeekendWarrior, Rusty Beams, https://www.unrealengine.com/marketplace/en-US/product/rusty-beams.
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An Output-Only Bavesian State Estimator for Partiall

UNIVERSITY JOF University of UNIVERSITY JOF
Ne New Hampshire Observed Structural Systems Ne Kl N N A M I
Martin Masanes Didyk?, Dr. Saced Eftekhar Azam?, Dr. Mohsen Ebrahimzadeh Hassanabadi’ Resilient Data Everywhere
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LITERATURE REVIEW

« Kalman Filter (KF) — 1969: needs input fj,

OVERVIEW

* So, how do we monitor infrastructure if it is, in general, large scale and with multiple

DOFs?

RECURSIVE ESTIMATOR

* Augmented Kalman Filter (AKF) — f.,; = fi, + v
* Dual Kalman Filter (DKF) — 2015: fi.,1 = fi + vy

Initialization Time Update Measurement Update

Xk|k-1 D =1- HkEk
= Ak 1Xk-1]k-1 Yy = Uka(Ckpklk 1Cx + Rk)DTUk
+ Gk-1Yk-1 Ky = Pklk-lck DU W’
Ky = Ky Uy
Pijk-1 = Ky = KDy
Ay 1Py_1Ag_1 +
GxRiGy — GkRKK AL — Xk = Xik-1 + K (Vi — CiXik-1)
AKiRi Gy + Qi Pik = (I — KiCi)Pyepie—1 (1 — KECY) +
KRy Kf

* 1% idea is to completely monitor the structure, which is unpractical.

* Gillijns and De Moor (MGDF) — 2012: no assumptions on input, prone to instabilities

« 2 jdea might be a Virtual sensing technique, through a calibrated model or digital twin.

* Through Recursive Bayesian Estimation techniques, we could estimate the response of Solution: Eliminate the input

unmeasured or unobserved locations of the system, using a limited number of

M. Hou and R. J. Patton: Discards parts of the observation
measurements.

* Also, the estimated quantities can then go back to the digital twin of the studied system to * M. Darouach, M. Zasadzinski, and M. Boutayeb: Equivalent to GDF, and prone to some

update the model. instabilities

* How is this different from other filtering techniques?: Unlike existing filtering techniques in » P K. Kitanidis : Only system w/o Direct feedthrough

the literature, for the state time update Xy—1 at time k, observation yy_, at t,_, is adopted,

and for state measurement update Xy at time k, observation yy at ty is adopted.

CanputT 3 C SYSTEM MODEL_

STATES (INPUT AND PARAMETERS) ESTIMATION
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g‘- 0 ’| “LV\‘U‘N%J Mw f\ 'Jlk” /|U '\ '\ H HIH} ‘P Jl \H fl "'l}\ ' !
B ] M Wil \/ H 'l \' | \1 | . | s &
0 ‘ | 2 3 4 5 6 7 8 5 n
& ] ﬂ MODEL UPDATING o \f ,\W\VJMW’\ J‘\/\/\F{ W\M \!M '
,;? 0 *H*r’ﬁlr 41r4‘%|f1“ F‘\f“ﬁ*rlﬁlr PSS PN, J } =~ Remniad
2 - ; == 1_ ' | | | | —flecl |
S 2 1 2 3 4 5 6 7 8 9
t(s) 02 1 ‘ |

m
.

. ®pc3

4
EE?

-0.2 - ‘ | 1

SYSTEM OBSERVATION

NOVELTY OF THIS WORK FUTURE WORK

e Develop a smoothing scheme for the same
algorithm to allow to an extended

/

\

Damage
Accumulation
(e.g. Palmgren-Miner
rule)
Fatigue Data
\___(e.g.S-N curves)

VIRTUAL SENSING

/= )

Structural Model

(e.g. Finite Element
Model)

* The proposed filter is a procedure for eliminating input from the estimation

problem, and the Numerical instability is solved by analytical derivation of observation window. PREDICTOR | —g-— FATIGUE LIFETIME | —D: it
o A Non-linear extension of the filter. 1. Spectral sl MAKING
pseudo-inverse parameters. : . SRR o Tichiles se o
2 Nonhnear SYStemS. 2. Time Histories ——— ESEMSon/of fati gus of structure or cost-
* It’s a 2-stage filter, this 1s it has only a time and measurement stages, son e Parameter estimation. of stressesinthe | S2MeES effective necessary
V1 entire structure 4 inspection and

Prognosis of

remaining useful
responses y(t) o, lifetime D

———+ maintenance/ repair

using measured

Application to bridges like moving load

: input-state estimation, without any
* In the case of it to be required, the input can be reconstructed. knowledge about the characteristics of the

input/load to the system.

actions

there 1s no additional stage for the computation of the input

o

e 1. Kalman Filter i 1. Spectral Methods
OR OR

2. Input-State estimation 2. Rainflow Cycle

_ methods ) \_ Counting Methods )
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CEAIC: Cloud-Edge Adaptive Intelligence For Concrete
Crack Detection and Quantification . Gopinath Gangisetti

* Deepak Khazanchi

* Anoop Mishra

University of Nebraska at Omaha, College of IS&T

stage 1 Crack Quantification
| 4 I
L T s (" AIM:
o CraNET: Weakly Supervised To perfprn'! real-time crack detection and
Framework _ [0] Np cracks i gquantification on concrete surface on
” . . unannotated images (weak labels) using
weakly supervised learning
) O Proposed Methods on tasks:
Guided GradCAM 1. Detection: CraNET, a weakly supervised
framework (WSF)?
2. Quantification: Traversing binary
e Use-cases ‘\ connected components
1 2 | AWS 3. Real-time inference: Cloud-Edge Al
Conclusion:
b
| - * Proposed framework for label-free
e algorithms in SHM with minimum human-
| Saoamaker Intervention that reduces cost and time
N _ SMART DAIA » Proposed Edge-Al framework to optimize
I latency for real-time inference and mobile
| | SMART DATA use-cases
- - - Structural Health Adaptive AI™* - SIMILARIty » Integrated Cloud-edge intelligence to adapt
Bridge Site monitoring (bricges) 2.Satisfaction Score 9 | J J P
| ' CrowdSource Intelligence scenarios from CI'OWCISOUI'CG knOWIGdgea
EDGE
| % % Table 1: Human validation study showing vote distribution on
Edge Inference: Optimized Model = | CraNET generated results
ﬂ — ___q___?’//;"jp (pruning/quantization/weight clustering) \‘;”P“""‘b‘“i"ﬂ‘ Qualitative Variable Votes
el 'i E:g::; | Exactly Similar 224
asks r N aual = Somewhat Similar 295
. L" n-Device erence: Retraine Neutral 61
ST S s v \ﬁ Ofm?:ing — Eﬁ::]:l‘:mte rm:sf:ﬂeu:nﬂ;' | ) SR SE;;?vhat Dissimilar 100
/ . - | 2 —’ ‘ (repr‘aseﬁtuﬁnn) _l;;fi:ltly Dissimilar ggg
Rust Detection TensorFlow Lt O PyTorch Keras @ ONNX Table 2: ML model performance
:ﬂ W 4 00 o = 7 Model Testing Accuracy  Avg Inference time (ms)
R LT CNN + Attention (6 Conv) 99.4% 22
Edge CNN (3 Conv) 91% 15
_ = ¥ gmEs T Edge CNN (6 Conv) 92.3% 29
Displacement/ . — - ,-r'
vibration monitoring
TAFAVAWY,
N UNIVERSITY JOI
1. Mishra, A., Gangisetti, G., & Khazanchi, D. (2023). Integrating Edge-Al in Structural Health Monitoring domain. arXiv preprint arXiv:2304.03718. e ms

2. Mishra, A., Eftekhar Azam, S., & Khazanchi, D. (2023). Weakly Supervised Crack Segmentation Using Crack Attention Network(CraNET) On Concrete Structures With Minimal Human Intervention (under review) ( )mlhl
3. Mishra, A., & Khazanchi, D. (2023). Assessing Perceived Fairness from Machine Learning Developer's Perspective. arXiv preprint arXiv:2304.03745. Wil
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National Infrastructure Analytics Portal — Breaking Down Silos Nebiaeka 0

Sahithi Anne?, Surya Rajalakshmi Muthiah?, Dr Sachin Pawaskar+ Omaha
1College of Science and Technology, University of Nebraska at Omaha

Problem Statement Infrastructure Mapping Architectural Diagram

I\/Iult.lple. systims. ,EXIISt In  silos hforl hmagwtenance ba.nd The below image shows the NIA dashboard with the metadata bubble
momtormg Of critical structure health. Can we bring expanded. Various filters are provided on the sidebar.

Heroku Application Server B Scheduled Data load

disparate systems together?

Huge datasets from National Bridge Inventory (NBI) is|l Fiters

available and needs to be processed efficiently.

(Approximately 7.5 GB) Nepraska 0 : —
Need an integrated solution that offers better visualization ' e St

RESERVATION ‘ Bl Eau Claire

and analytics of huge datasets. - \ R T WISCONSIN gl

&

Buffalo  gillette g
2
X
3

A Home B% Dashboard N Analytics

v VuedS ] EEE?) Django AP Python Automatic
Data load process

AWS S3

Bridges # 2000 Router p .

Rest v

, ) Framework S
LComponentsJ . \ / Heroku
y [ Model ]( DynamoDB

[ Service ]
PostgreSQL

META SURVEY ELEMENTS PROVISION

NIA Portal .  DeckProtston ;
The National Infrastructure Analytics (NIA) web portal offers v MING Grger TRF [
a framework of analytical methods, visualization techniques, || ... - | S— 5 B Chcago al
and tools. v e | g gl | .
NIA hosts data-driven models to comprehend bridgel| soeven - o f;‘ 5 Start >

maintenance and efficiency. Additionally, NIA includes 5 T umos ol \ /

Springfield Champaign :

Denver G :
references to the compilation of various datasets, cleaning,|| svoueree el e oD [ [ .. FHWA Website

analysis, and transformation of bridge inspection records

Grand R
0

Download
ML/Zip file

. . . . Nebraska Bridge infrastructure 4 N
into time-series formats for all states and all previous years. , , , ,
. The below image shows the bridges in Nebraska. These data points are L A 4
The NIA framework enables users to extract useful insights , , , , Log on server |« Validation
L . . g colored according to the bridge ratings. For example, bridges marked Log to
from the data and facilitates users to identify critical rioht red ¢ bridees that S, 4t DB table
information and predict patterns which help the federal ST TEC TEPTESENT DIICEES tNat are In tritital tontition. ~ / —

Sioux Center

government to plan to fund improvements in infrastructure . T e ' PostgreSQL
Features Gl s 1 e
& : gl YE o End

Framework for Integrated Eco-system onen (@) ©7WR seurciy FortDodge k @

: L. : o . . @o» |
Data V|suaI|.zat|on for a.ctl.onable. insights el , A ... 8 Upload to
Data analytics for predictive maintenance Scottsbuf ee® o 0 v AWS S3
Flexibility to extend to other critical infrastructure Y. N L o CO,U& |
Omaha

Ability to view metadata for each bridge like location,|} N ) G Nompu a o0 W Applications of NIA
. . . « . o . e : (J" Springs Gothenburg and Island " - ‘,-,,: . . .
surveyed information, individual elements conditions, etc. v S @% RCT0 D) NIA is a one-stop shop that integrates data from a wide range of
data sources.

Provisions available on a bridge can be viewed. R Le”g‘.fo,d,?;’e'”‘
! . @ cid« &
- NIA can be used by bridge engineers to analyze the condition of
The below image is a snippet from the admin page where bridges over the years.

infrastructures can be provisioned for various elements. Here NIA can be used to predict trends which can be used for improving

- Download data from FHWA data sources, analyze it andjj. . L
convert it to the desired format mf(rjasstructtére C005512355 has been provisioned for Seismic sensors current bridge conditions and in the construction of new bridges.
' and Strain Gauges.

Database and Cloud Integration —— This project is partially supported- by

- Database on Heroku, schema design and load Sk = NSF Award Number:1762034, Spokes: MEDIUM: MIDWEST: Smart
Ootimizat —_— INFRASTRUCTURE PROVISION CREATED ON AR o . _ .

- Optimization ements Y

Data Visualization Infrastructure provisions + Add

) lmplemented using Google I\/Iaps, Django REST API and 005512355 Strain Gauge April 30,2023, 9:31 p.m. . . .
Vue JS for U] HRmchIres US Army Corps of Engineers, Engineering Research and

Keyboard shortcuts Map data ©2023 Google  Terms of Use

Techniques
Data preprocessing

C005512355 Seismic Sensors May 2, 2023, 8:40 p.m.

C007804910 Strain Gauge April 30, 2023, 9:31 p.m. Development Center grants W912HZ21C0060 — Multilevel Analytics

Data Analytics and Machine Learning (Future Work) Org Iasiniciunes . . .
0002801720 Strain Gauge Al 30,2023, 930 p. and Data Sharing for OPerations Planning (MADS- OPP) and

- Predict critical information like patterns, trends, etc. 0rgs W912HZ23C0005 — SMART Analytics for Critical Infrastructure inside

- Integrate Data Analytics into the tool. e C002800420P Strain Gauge April 30, 2023, 9:28 p.m. a Resilient Data Fabric (SMART-RDF).
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Introduction Computer Vision for Motion Tracking

Bridges in Nebraska Extraction of Displacement Using Cameras
® Nebraska has over 15000 bridges ® C.omputer visi.on methods can find different information from the
® More than 9% of the county bridges are in poor condition’ video frames, including displacement

o

o Displacement estimation can be accomplished using targets or

They are regularly being monitored for safe operations

Over 7% of the bridges are closed due to safety concerns without adding any target to the structure

Commonly, they are being inspected visually by the trained engineers
Traditionally, bridge assessments are done visually by experts or via using Steps for Extraction of Displacement from Cameras

contact sensors

. . ° Identify regions of interests
"“Nebraska Department of I'ransportation”
® Detect feature points
® Track motion by matching
feature points across frames
®

RS W e Convert measurements to world
& Closed bridge, Nebraska
“ (Photo credit: R Nasimi)

* s T e
LR DR B N SRR AL BAL N R RS SRR, e SO o s

Snooper truck

coordinates

Traditional Bridge Inspections

Limitations of Traditional Inspection Methods and Contact Sensors:

Feature points extraction and ma tcbing
® Access to the bridge

Selected Bridge (D041) and Sensors

® Needs to be fixed and be installed properly
® Saf
¢ | j s:ii,lation cost ® An out of commission bridge was selected

® The bridge is a 90 ft steel truss bridge with a concrete deck

Cameras for inspections: ® The bridge and the site were instrumented with contact and non-
¢ C I; t 1 . contact sensors/cameras

ameras are low-cost and accessible
. _ ® Dynamic loading was imposed on the bridge using a 26 ft U-Haul

They are hght and easy to use ol
ruc

® They have become popular for bridee inspections
¢ D ty 1 dp tp , 5 P ® 48 strain transducers and 4 accelerometers were mounted on the

ata recording and storage is eas

5 5 y bridge for contact-based health assessment and damage detection
|_18 L 18 o 18 il 18 1 18__

(a)

(b)
Selected bridge’s (D041): (a) elevation and plan view; (b) bridge site.

Smartpb ones and low-cost cameras options for bridge z'nspections

Nebraska

n-contact Bridge Response Measurement: Monitoring Nebraska’s Closed County Bridges

Roya Nasimi, Ph.D., Mubarak Abu Zouriq & Daniel G. Linzell, Ph.D., Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE

O El

US Army Corps
of Engineers-

Omaha

Bridge Test

Three cameras were set up at distances of 18’, 20°, and 37’ on west side
of the bridge
Ground truth values were measured using LVDT on the west side of the

bridge

Contact
Sensors

Bria'ge instrumentation and eXpenm ent

Displacement Estimation

Sample of results for camera and LVDT measurements at Midspan point.

The U-Haul truck crossing the bridge with 10 mph speed.
Data filtration applied using Simple Moving Average (SMA) filter:

n+(w-1)

. 1 . .
Dispfiiterea(n) = ;Zi=n w: window size

DiSpUnFiltered (l)

Midspan Displacement @ 10 mph without filtering

0': ol LT / F}ﬂ#’ﬁ%‘fﬁ%
p - y
A5 "N ; W\ -175 \ .| p : |

-2
—Camera Displacement Y 1

']x' ‘. H
25 Ll
|

~—LVOT Displacement

.35 -3
0 5 10 15 20 25 0 5 10 15 20 25

Time (sec) Time (sec)

(a) (b)
Measured Displacements using Camera and LVDT: (a) With Filtering; (b)without Filtering

Midspan Displacement @ 10 mph with filtering

Displacement (mm)
Displacement (mm)

—Camera Displacement
~—LVOT Displaceament
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Amishare

P —
Amazon AP

Ec2 I
eGenerates TDMS File from sensor * Mount S3FS file system in Ec2 instance and move to S3 * Web access to Client to view
data. Bucket damage Index
» Store data in Rasberry-pie using aws * Generate Novelty Index and store then in DynamoDb * Flexibility to use filters to see
green grass. using lambda Functions only necessary data
* Transfer files to Ec2 instance through *Restrict lambda access by adding necessary |IAM
Amishare. permissions.

* Generate end-point using Api-gateway for front-end to
access




Building Explainable Machine Learning Litecycle:

Model Training, selection, and deployment with Explainability

University of Nebraska at Omaha, School of Interdisciplinary Informatics

Machine Learning Lifecycle

A set of interrelated stages for training and deploying machine learning models. It is divided into phases, each with
Its own set of activities and needs. It needs an important component — Explainability.

Machine Learning

Machine learning has rapidly gained popularity In
recent years and has become an essentia
component of numerous domains, including critica
domains such as Infrastructure maintenance anc

Building Explainable Machine Learning lifecycle with MLflow

monitoring. In order to build effective machine i
learning models, it Is essential to have a deep '. . .}'
understanding of the end-to-end pipeline and the - p ) DataPreprocessing Features Selection
tools and platforms available for building it. | 6 [ .
il ;.
""""""""" ‘ n Feature Exploration

YAML File

T I model
¢} MLmodel

\# conda.yaml

petal length :-.u-.:_- ! |L model.pk|
aepal width fer) _ &4 python_env.yam!
petal width o) - - 4 requirements.td
Applications Of | Tramedr Odel /
Machine Learning " \ .
Explanability Fvaluate Models Performance metrics .
g Sample YAML File
) w
/I Model Training
,” "'-/Pf‘
machine learning in different domains
State-of-the-art open-source MLOps platforms &
Model Report
mli/c | o Model Selection
— Compare Models l_]
- é (e -—-
Airf "’ ‘ Pachyderm =
Iriow — ‘
/\\ ¢ y '_=. Explanation Comparison Model De p| oym ont
Kubeflow

Performance Comparison

BV et

Contributors:
Vidit Singh

Dr. Yonas Kassa
Dr. Brian Ricks
Dr. Robin Gandhi

Why add Explainability in ML Engineering

Explainable models help build trust in machine learning
systems, as users and stakeholders can better understand
the rationale behind the model's predictions or decisions.
This transparency Is particularly important Iin sensitive
domains like healthcare, finance, infrastructure, and traffic,
where the consequences of model decisions can be
significant .

Output=04 Output=0.4

Age=65 — Age =65
X=F — Sex=F
Explanation
BP =180 — BP =180
BMI=40 — BMI =40

Base rate =0.]

Baserate=0.1

Model explanations [3]
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Progress in a New Visualization Strategy for ML Models

A Mid-Project Summary of Design and Ongoing Problems
University of Nebraska at Omaha, College of IS&T
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Background

Overview of ML Models

Machine Learning Models are trained on datasets
which are encoded into numbers. The models are
then evaluated for effectiveness, eventually yielded a
model which can somewhat accurately make
predictions based on correlations from the input.

Machine Learning Models take a set of features, or
categories of data, and encode them into numbers; a
model then Is able to be sent information to make
predictions. After a prediction is made, it must be
Interpreted via decoding. This then leads to a result.

rainfall | weather | wind speed
Bcm | sunny | d4mph
Featuras 14cm [ overcast| 20mph
Ocm | sunny | 2mph
|
Weather Map
. sunny == 0
Encoding overcast —= 1
rainy = 2
Prediction prediction = model((3, 0, 4))

prediction = (0.23, 0.77)

(0.23 0.77)-=1

Decoding (067, 043)=0

'\\\_____________.--"'

0 -= it wontrain
Result 1 =1t will rain

The above graphic shows a model deciding whether
it will rain or not given recent amount of rainfall, wind
speed, and the current whether condition.

Visualization
Main ldea

This visualization strategy takes two selected
features and draws a graph with the model’s output
embedded in a color gradient.

At a coordinate (feature 1, feature 2), the model can
be ran by generating random, acceptable values for
additional features. The model is polled a number of
times, each time with the selected features remaining
the same, but other features randomly generated.
Model output Is aggregated in a arithmetic mean
value.

This mean value iIs used as the third dimension In the
graph, the color gradient.

Feature 1 Mean or Variance of

samples with feature 1

/and feature 2 values set
One ofMany Chatts | :

Selected Features:
(Feature 1, Feature 2)

Randomized Features:
(... the rest)

Feature 2

Usefulness of Visualization

Explores Model’s Learned Boundary Lines

Decision Tree models create linear, single-axis
poundaries, but most other models, including deep-
earning models create non-linear boundaries. The
goal of this visualization is to find and show those
boundary lines as they exist in a relation between
two features.

Design

Tensorklow Model

v v

list of features and
domains

frugally-deep Model

v v

Continuous Features Discrete Features

v

Generate all possible
combinations of

cardinality 2 of all
features

v

Select set of two features
to be explored, other

features are randomly
generated

v

Generate valid model
input

Y
Aggregate model
outputs at fixed
values of explored
features

Y
Store aggregated

model outputs in
output file for
visualization

Visualization

D3.Js Is used to create a heatmap, a cell a coordinate
whose color Iis determined by a linear interpolation
along a gradient using the mean.

Challenges

* Achieving linguistic performance and memory
control when models originate from Python-
based Tensorflow programs

« Resolved with the frugally-deep github
repository and using C++ to generate
visualization data

* Learning about ML and how it's organized
just before and just after a prediction is made

« Talking with my team members and
experimenting with the model in Python
and C++ has given me a better
understanding of machine learning

« .Managing different types of input (Discrete
vs Continuous)

* An incremental approach was used to
explore the continuous space,
represented using floating-point values.
The discrete values are only calculated
once Iif not matched with a continuous,
saving runtime

Work In-progress

* |ncremental Variance Algorithm alongside
arithmetic mean

« Expanding visualization technique beyond binary
models

« Managing inter-feature constraints during random
generation and feature selection

« Usage of this visualization technique to explore a
model trained on the Iris dataset

Acknowledgements

This research is partially supported by NSF Award
Number:1762034, Spokes: MEDIUM: MIDWEST:. Smart
big data pipeline for Aging Rural bridge Transportation
Infrastructure (SMARTI) as well as US Army Crops of
Engineers, Engineering Research and Development
Center grants W912HZ21C0060 — Multilevel Analytics
and Data Sharing for OPerations Planning (MADS-OPP)
and W912HZ23C0005 — SMART Analytics for Critical

Infrastructure
N IUNIVERSITY IOF

Omaha



	Done
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	Not Done
	Slide 14
	Slide 15
	Slide 16: Building Explainable Machine Learning Lifecycle: Model Training, selection, and deployment with Explainability
	Slide 17


