

Deep Neural Networks with Outdoor Bridge Image Datasets for Concrete Crack Detection and Quantification

Ji Young Leea, Chungwook Simb,*, Carrick Detweilera

^a School of Computing, College of Engineering, University of Nebraska - Lincoln b Department of Civil and Environmental Engineering, College of Engineering, University of Nebraska - Lincoln

Summary

- Crack observed in concrete bridge elements can accelerate deterioration of bridge health
- Current system exclusively rely on data provided from human inspectors
- Many researches have been studied under restricted environments
- This project demonstrated the inspection framework using deep learning model with images collected from outdoor concrete bridges
- Additionally measured crack width for further assessment

Datasets

- Collected concrete bridge surface images from outdoor bridges located in Nebraska
- Stitched and mapped raw images to generate bridge crack map

Vision-based deep learning tasks

Labeled cracks for segmentation models

Crack Detection

Crack Width Measurement

- Expanded loss to measure L1 norm for crack width distribution
- Extracted Euclidean distances between centerline to boundary pixels

Average errors between the predicted and measured values with the

			(unit: inch)
Average			0.0296
10	0.0625	0.1154	0.0529
9	0.1250	0.1172	0.0078
8	0.0500	0.0962	0.0462
7	0.0500	0.0750	0.0250
6	0.0400	0.0600	0.0200
5	0.0800	0.1417	0.0617
4	0.1375	0.1150	0.0225

0.0750

0.0088

0.0008

0.0500

Conclusion

- Mimicked the visual inspection performed with human inspectors by reading images, localizing cracks, and measuring the crack widths
- Concluded the vision-based data analytics can provide useful information for bridge inspections and assist the health monitoring of aging concrete bridges

